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PREFACE

This report was prepared by Dr. Jerome B. Johnson, Geophysicist, Applied Re-
search Branch, Experimental Engineering Division, U.S. Army Cold Regions Re-
search and Engineering Laboratory. The research described in this report was
funded by DA Project 4A762784AT42, Cold Regions Engineering Technology; Work
Unit CS/012, Attenuation of Shock Waves by Snow.

Dr.J.A. Brown (Los Alamos National Laboratory), Dr. E.S. Gaffney (Ktech Corp.)
and K. Jones (CRREL) technically reviewad this report.

The contents of this report are not to be used for advertising or promotional pur-
poses. Citation of brand names does not constitute an official endorsement or
approval of the use of such commercial products.
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Estimates of Shock Wave Attenuation in Snow

JEROME B. JOHNSON

INTRODUCTION

Shock wave attenuation in snow is affected by the amplitude, geometry and
duration of a shock, as well as the mechanical properties of the snow. Accordingly,
these effects must be taken into accountin any description of shock attenuation, The
mechanical properties of snow for high-strain-rate, large-amplitude shocks are not
now well understood. Consequently, attempts to estimate shock attenuation in
snow have relied on field measurements of pressure attenuation from explosions in
snow and on theoretical constitutive descriptions.

Mellor (1977) used the results from field measurements of explosive detonations
insnow to estimate the attenuating properties of snow forspherical shock waves. He
estimated that the attenuation of shock pressure, combining geometric spreading
and internal dissipation, near an explosion decays as R (R being the propagation
radius) and close to the elastic limit it is approximately an R decay. Brown (1980,
1981, 1983) appears to have made the first and only attempts to estimate shock
attenuation for plane waves in snow. He used two theoretical volumetric constitu-
tive laws, one for medium to high density snow and one for low density snow, to
eslimate shock attenuation, His results indicate that plane shock waves can attenu-
ate by more than 80 to 90% after propagating through only 0.04 to 0.06 m of snow.
These are large attenuations that are, at their maximum, about an (X ‘,—XO)"'2 decay
([X~X,] is the propagation distance).

rown did not discuss the importance of an applied shock’s amplitude, geom-
etry and duration on attenuation features. This paper will examine the importance
of the pressure-time profile of an applied pressure impulse on shock attenuation in
snow. Snow will be represented by asimple mechanical mode! in which attenuation
occurs through momentum transfer from the applied shock ! the snow.

MOMENTUM MODEL

The momentum model, also known as the “snowplow” model, was used in initial
attempts at developing constitutive relations to analyze the dynamic behavior of
porous materials (Herrmann 1971), The porous material is assumed to compact to
its final density at a negligible stress. After compaction, the material is assumed to
be incompressible (an ideal locking material). The change in momentum caused by
a suress wave (the pressure impulse) is assumed to be spread uniformly over the
volume of the material behind an advancing shock wave, This means that the stress
wave is lengthened in time and reduced in amplitude as more of the material is
compacted by the propagating shock. Hence, attenuation is caused by momentum
spreading, and losses attributable to plastic deformation, fracturing and release
waves are not considered.




INSTANTANEOUSLY APPLIED IMPULSE

Considera pressureimpulse () applied normal to the plane surface of snow, and
assume that snow is an ideal locking material. Snow next to the surface will be
immediately compacted to its final density. Since thecompacted snow is rigid, it will
move at a uniform pressure and particle velocity after the pressure impulse is ap-
plied. The stress wave will propagate into the snow as a compaction shock, moving
with a velority D at a pressure P and particle velocity V. At the shock front these
parameters are related by the Rankine-Hugoniot jump conditions for the conserva-
tion of mass and momentum across the shock front (Kolsky 1963)

PoD = P¢[D~VI] M
and

P =pyDV @
where p,, is the initial density of the snow and p,is the compacted snow density. The
compacted snow density p, is usually determined by experiment, but is estimated

for this paper because of the lack of suitable data. In using eq 1 and 2, thecontribution
of shock heating in the snow is neglected.

Undisturbed

Compnoted
Snow

Snow

!

xh — — — - —
X - — —— - —

Xo |

Figure 1, Deformation geometry for plane shock wave propa-
gation in snotw,

Figure 1 shows the deformation geometry in one dimension for a pressure im-
pulse applied at the initial snow surface X,,. The location of the surface of the snow
and the shock front at some timeafter the application of the pressureimpulse are X,
and X, respactively. During the time that the shock fronthas traveled to X, thesnow
surface has moved a distance U, U, is a function of time or, alternatively, a function
of shock propagation position X; . At any time the location of the snow surface is

Xi =Xp + Up. 3

The displacement of the snow surface can be calculated by integrating the parti-
cle velocity over time

"f
Uy =| Vat 4
to

where t, is the time that the shock 1s applied and ¢, denotes the timne required for the
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shock toreach X. Knowing the shock pressure attenuation with distance is of more
practical interest than following the pressure with time, Thus, the snow surface
displacementwill be reformulated in terms of shock position rather than time. By use
of the fact that

D= ng_ (5)
eq 4 may be rewritten as
X
uO =J y_ dx . (6)
X P
Fromeq1
Yaft-2)= @
D (1 Pf) B

where P describes the relative snow compaction, Substituting eq 7 into eq 6 and
solving gives the position of the snow surface at time t,

X; =(1-P) Xo +BXs. (8)
The mass and momentum per unitarea of the snow per unit length contained in the

length (X ~ X)) between the current snow surface position X; and shock front
position X, are

dmt =P dx (9

dH = PV dx . (10)
Since the compacted snow is assumed to be rigid, V is constant through the region

X, to X, and is equal to the particle velocity at X, i.e. V = V(X)). Consequently, the
momentum per unit area in the snow at the tiine the shock has reached p s

X
H, =j AVdx =2Vep (X - X)) 1
Xi

Substituting in for X, from eq 8 gives

Hy = PV (1-B)(X¢ - Xo) . (12)
The momentum per unit area in the snow H, must be equal to the momentum per
unit area applied to the snow from the instantaneously applied pressure impulse
thatis given by

Hp=1y. (13)

Equating H, and Hp and solviny for V gives

3




lg
TP - B) (X; - Xo) (o

Equations 7 and 14 can be used in eq 2 to determine the pressure at the shock front

2 2
P(X() = PV~ Iy . (15)
B PyB(Xs - Xof

Figure 2 s1.ows the shock front pressure for snow subjected to an instantaneous
pressure impulse of I;= 100 Pa s. The pressure attenuates as (X ~X ) with pro-
portionality constants that depend onimpulse magnitude, initial snow density and
the relative snow compaction B. Figure 2a shows that snow with a higher initial
density supports less pressure at the same propagation distance as compared to
lower density snow.

Equation 15 can be rewritten to show shock pressure as a function of the total
mass of compacted snow

2
P (X;) = 12Po (15a)
Bm?
where
m = py(Xe - Xy). (15b)

py= 100 kg/m? Py = 400 kg/m®
107" =089 10 Pu 0.6 -
10'4— 109
ﬁ 103}~ E 1079
104 10
p,= 200 kg/m?
Py = 800 kg/m?
0 rvi 0 10° Xz 1 -0
10° 10 10 10° 10" 10
Distance (m) Distance (m)

a. Imtial densities of 100, 250 and 400 kg/nt® and final b. Initial density of 200 kg/m? and final densities of
density of 900 kg/m?, 400, 600 and 900 kg/nt’.,

Figure 2. Pressure decay with distance for an instantaneously upplied plane shock wave pressure impulse (100 Pa
8), predicted by the snowplow model.




pg= 400 kg/m?
B=0.56

107"+

102}~

¢
E 109

104 \ Figure 3. Pressure decay as a
. s function of snow mass corn-

Py= 8CC kg/m pacted by the propagating

108 | | plane shock wave, predicted
109 107 10 by the snowplow model for the
Mass per Unit Area (kg/m®) conditions given in Figure 2a.

Theresults given in Figure 2a are recalculated using eq 15a and shown in Figure 3.
Figure 3 shows that snow with an initially lower density will support a lower
pressure magnitude than will a snow with a higher initial density, given the same
total compacted mass. This finding leads to the common observation that lower
density materials are better attenuators than higher density materials because less
mass is needed to produce a given attenuation than for a porous material of higher
density.

CONSTANT PRESSURE IMPULSE
OF FINITE DURATION

The solution given by eq 15 is not a very satisfying way of evaluating shock
attenuation since it assumes instantaneous application of the pressure impulse. This
is unrealistic, as it implies infinite pressure at x = X, and does not show how
pressure pulses with the same total impulse but different amplitudes and durations
areattenuated. Ananalyticalsolution canbe derived for a constant pressure impulse
of finite time duration, given by

P@t) = P, 0stsa

(16)
P@#t) =0 a<t

wherea is the time duration of the applied pressure pulse, The momentum per unit
area caused by the pressure impulse is

t
HP=J Pydt for0 st sa (17)
0

and




a
Hp -:I Podt fora<t. (18)
0

Equations 17 and 18 show that the momentum during application of the pressure
impulse will vary with time, while the momentum after the impulse has been
applied is constant. Therefore, separate solutions for shock pressure attenuation are
needed during the time period of pulse application and for the time period after the
pulse has been applied, Equations 17 and 18 can be transformed into spatial
coordinates by use of the results of eq 5 and 7, giving

X
HP-J PoB dx for 0 <X <L, (19)
o VY B

The limits of integrationareO to X, =aV/B. Equating momentum in the snow (eq 12)
to the pressure impulse momentum (eq 19) and differentiating gives

_PoB__vdivxg. (20)
Pe(1-B) Ve X
Also
v [vx]eldlvixy. 1)
dx dex 2

Substituting the identity in eq 21 into 20 and integrating gives the particle velocity

V = [p,_&ug'ﬁﬂm for 0 $X; € X, (22)

Hence, during the period of pressure impulse application, the particle velocity is
constant and there is no attenuation of the shock pressure. The distance that the
shock has traveled at ¢ = a is given by

X, = Da =[ P “2..]”2. 23)
BPe(1-p)

After the pressure impulse momentum has been applied to the snow, the
relationship between the pressure impulse momentum and snow momentum is

Poa =PV(1-B)X;  for X, < X;. (24)

Solving for the particle velocity and using the definition of X ineq23 gives

Ve [__BQE__}” 2Xa (25)
Pe(1 —B) X

The shock pressure as a function of distance can now be determined fromeq2,7,22
and 25, giving




P(X{) =Py for 0 £X; <X, (26a)
Py X,2 -
P(X;) = - forX, < X;. (26b)
f xfl a < Xt

Figure 4 (square wave) shows the pressure as a function of distance for an initial
snow density of 350 kg/m® p = 0.3 and a pressureimpulse of 605 Pas, Theshock does
not begin attenuating until after all of the pressure impulse momentum has been
applied to the snow surface, and then itattenuates as X;? Comparison of the square
wave pressure impulse to an instantaneous pressure impulse (impulse) shows that
the pressure is lower for the square wave during its duration of application than for
an instantaneously applied pressure impuise. After the square wave momentum
has beer completely transferred to the snow, both the square wave and instantane-
ously applied impulse pressures are the same. Since explosives ard other sources of
shocks are applied over a finite time, this result shows the importance of modeling
the pressure-time profile of an applied pressure impulse for predicting attenuation.

10!

E vy ll 1 LN B B 'lrl
" Exponential
ol
F p,= 380 kg/m?
g | py = 500
e ™ B=03
E 10
102
- \
,‘0-3 ! 1 llllLll ! Ll llllll J
0.005 0.05 0.5

Distance (m)

Figure4. Comparison of pressure decay withdistance for plane
shock waves, each having a total applied pressure impulse of
605 Pas, predicted by the snowplow model. Thepressure impulse
was applied instantaneously forimpulse, with a square wave of 0.17
ms duration for square wave, and an exponential pulse of 0.16 ms
duration for exponential.

VARIABLE PRESSURE IMPULSE
OF FINITE DURATION

Simulating a realistic applied pressure impulsc requires a function that can
represent variable pressure impulses of finite duration. These variable pressure
impulses result in nonlinear differential equations that do not have closed forin
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solutions and whose numerical solutions can be unstable. In addition, the form of
the differential equations depend on the particular variable pressure impulse ap-
plied to the snow surface. To reduce these computational difficulties. the variable
pressure impulses were approximated by a sequence of square waves, The accuracy
of such an approximation depends on the time duration specified for the square
wave segments that constitute the applied pressure impulse, Thus, instead of ex-
actly formulating the problem and obtaining a numerical solution, the pressure
impulse is approximated and solved analytically within the sequential time steps.
The variable pressure impuise of finite duration beginning at t = 0is approximated

bp=1 for 0 st < a4y
b =f(§_2_;'_¢n_) fora; St <aj
Pt) = Poby : @

+ e
by =f (a—“—v—za—“-—]) foran.g st <ap
bn=0 foranst.

Theshape of the vaniable pressureimpulse is (f), where the b, weighting coefficients
are determined at the midpoint between the beginning time and ending time for
each squarewavesegment f[(a, , +a,)/2]. Thea, are the times that define the square
wave segments where i =1,2,3,...,n-1.

Solving for the pressure in snow as a function of distance, using eq 27, requires
that the problem be formulated for three conditions. The first is for the time, or
spatial increment, of the first square wave segment. The next solution mustaccount
for the momentum that has been applied to the snow at the time, or spatial position,
of interest. Finally, a solution must be found after all of the pressure impulse
momentum has been applied to the snow. These conditions can be expressed as

X
I Py bg v—%)- de = PVo(X)(1-B)X; for 0 < X; < x“l (28a)
0 0

X
Hp, +[ Py V{Sﬁ dx = PrVi(X)(1-B)X; for Xgl S X < Xa,
1
1

Xa
(28b)
n-2 Xg
EO R JX 0%n-1 V“_’ (x) x f n—l( f)( B) f
1

for X‘.“_1 S X < Xan
n-1
T Hp =2 Va(X)(1-B)Xs for X, s X;. (280)
j=0




There are n+1 equations to solve before the complete particle velocity solution can
be found. Each equation depends on the solutions of the previous segments.

Equation 28a is a constant pressure impulse, with the solution given by eq 22,23
and 26a

2
2 a
x‘,1 =y _ZL (29)
V3(X)) =y for 0 sX; < Xa (30)
where y = PoB .
pe(1-B)

Equations 28b can be solved sequentially to give the solution for the spatial position
of interest, These solutions can be given as a set of recursion relations for position,
particle velocity, and time

2 - - -E- . 2 1/2 ZP.L —é‘.
X =841 = a4 +Bi (Ai i'BlXal) ] 2 "By (31)
v 2(Xg) =31é[(vf-_,<xap ~vbi) X, + YbiXF] (32
where

l =2 1,2'o' n'n'--l fOl‘ Xm SXf < xa‘+1

and

Ay =[VE (X)) -vb] X3,

By =vb .

ValXp) = =20 ——  for Xa, < X; (33)

where
v H H
& He = Hp

is the total momentum per unit area applied to the snow. Equations 25 and 30 are
used to start the solution and the recursion relations are used to follow the pro-
gression of the shock.

Figure 4 (exponential) shows the results of using eq 29 through 33,2 and 7 to
calculate the pressure as a function of shock wave propagation distance for an ex-
ponentially decaying pressure impulse (total pressure impulse = 605 Pa s)

P = pye-tut (34)

where o.jsa decay constantand P, is the initial pressureand f(t) = e, Cmparison

9




.

of the three different applied pressure impulses (each with the same total momen-
tum) in Figure 4shows that shock attenuation can be markedly different during the
period of pressure impulse application. The instantaneously applied pressure
impulse appliesall of its momentum at once resulting in infinite initial pressure that
immediately begins attenuating as X;2, where X, = 0. The square wave maintains
aconstant pressureequal to the applied pressure until all of its momentum hasbeen
transferred to the snow and ther begins to atienuate. Finally, the exponential pulse
gradually attenuates while its momentum s being transferred to the snow, asymp-
totically approaching an X;2 decay. Once a pressure impulse has been applied to
the show, pressure attenuation is controlled by the mechanical properties of the
snow and the magnitude of total pressure impulse.

ATTENUATION OF CYLINDRICAL AND
SPHERICAL GEOMETRY SHOCK WAVES

Geometric spreading can greatly increase shock attenuation in snow. Torvik
(1971) developed equationsdescribing pressure decay for cylindrical and spherical
geometry shock waves using the snowplow model and assuming instantaneous
application of a pressure impulse. For a cylindrically spreading shock, the pressure
is given by

p(R) = JORI(1-BF (35)

PoP R%(R -r)2

r = [pR? + (1-p)R3]". (36)

The pressure for a spherically spreading shack is

P(R) = IgR“Q(l'B)z | (€7))
PoB RYR=-r)?

Compacted

Snow D

Undisturbed
Snow

\ Figure 5, Deformation geometry fordiverging

shock waves.
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r=[pR® + (1-B)RI]". (38)

Iisthe instantaneously applied pressure impulse, R, is theinitial radius of the cavity
surface in the snow on which the pressure impulse is applied, and r is the location
of the inner radius of the cavity at some time after the application of the pressure
impulse (Fig. 5).

When R = R + ¢, where € << R, a cylindrical geometry shock decays as € “2, in-
creasingto a decay of R for e>> R (Fig. 6a). A spherical geometry shock decays

10 T T | IS N R B R 10% =TT T L B N B B I
109 SN Ro=1.0m Fignt.0m :
g - =
E’ 10.2L Ro- 0101 ot
10"} &
108 - -
1 Ll dag il L Lol Ul1c L | LL—I—I"' L T B W
0.008 ' 0.0 06 0.000 6,00 09
R-Ry (M) R-Rp (m)
a.Cylindrical shockwaves with initial radiiof0.01 and1.0 b, Spherical shock waves with initial radii of 0.01 and 1.0
m, predicted by the snowplow niodel, m predicted by the snowplow model,
1 | I lll||| | 1 I |||l1| ) ‘l—_rllllrl | ¥ ) llllll

Po= 360 kg/m®
py = B8O
f=03

N\ Rg=1m

pow 350 kg/m®
py = 800

=03

N\
10 bt i1l Lo Lyl 10" il
0.009 0.09 0.009 0.08 0.9
R Ro (m) R Ro (m)

¢.C l/lmdncalshockwaves in snowwith initial densities of d. Spherical shock waves in snow with initial densities of
200 and 350 kg/m® and initial radii of 1 m. 200 and 350 kg/ur® and initial radii of 1 m,

Figure 6. Comparison of pressure decay with distance.
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as €2 for € << Ry increasing to R fore >> R, (Fig. 6b). These findings show that
pressure decay, including the effects of geometric spreading, vary significantly de-
pending on the initial radius over which the pressure impulse is applied and the
distance from theinitial radius. Figures 6c and d show the effect of changes in initial
snow density and p on pressure attenuation for cylindrical and spherical waves.

PRESSURE DECAY OF A
LINE CHARGE ON SNOW

Line charges are used to clear minefields and to remove snow cornices fromn
mountainridgetops. Therefore, itis of practicalinterest to know the extent that snow
reduces the effectiveness of line charge detonations. For a line charge resting on or
above a snow cover, the cylindrical pressure wave that hits the snow surface has
propagated primarily through the air,

Ford (1986) has measured air-blast pressure, positive phase duration and total
pressureimpulse at the ground as a function of lateral distance from the axis of aline
charge explosion (Table 1), The positive phase duration is defined as the duration of
the compreasive (positive) shock pressure, Although air-blast pressures over snow
would differ, it is assumed, for this example, that the air-blast pressures given in
Table 1 would also occur over snow, Furthermore, the snow is assumed to be deep
and shock pressures are determined only for small propagation depths into the
snow so that e << R, where R, is the distance from the line charge to the point of
interest onthesnow surface, With these conditions, thesnow--ground boundary can
beneglected and shock pressurein thesnow canbe estimated from theequations for
aone-dimensional variable pressure impulse of finite duration (eq 29-33,2 and 7)
and an exponentially decaying pressure pulse (eq 34), Figure 7 shows the shock
pressureas a function of distance from theline charged, . atthe snow surface (using
the pressure impulse data from Table 1). Figure 7 also shows the calculated pres-
sures, assuming p, = 350 kg/ m3 and p, = 500 kg/m?, as a function of d, , for shock
propagation deptha intothesnowof0. (;6 0.1,0, 2and0 3m.Itis evidenttlﬁatair-blast
shock pressures, for a given penetration depth into the snow, do not attenuate the
same amount for a given shock penetration depth at the different d, .. Shock
attenuation (that is, pressure reduction after a given shock propagation depth) is
greatest near the line charge (d, . = 0.96 m) and least at the farthest distance (d,_
23.97 m). This occurs because the duration of the applied air-blast pressure impu se
(positive phase duration) increases with
d - (Table 1). The increasing positive

plfmseduration allows theshock topropa- Table1, Air-blast measutrements—

gate through a greater depth of snow shot 2 (after Ford 1986).

before starting thee™ decay. These find-

ings suggest that, forshallow shock pene- Distance  Positie Peak

tration depth into a snow cover, line I from phase - alr-biast - Peak
necharge  duration  pressure  fmpulse

charge pressure reduction depends on (1) (ms)  (MPa)  (kPas)

the positive phase duration in addition

to thetotal pressure impulse, Also, shock 2'33 1:-8 ?24 (‘Lg;

pressureattenuation inasnow covercan 697 16.0 036 076

be overcome, somewhat, by increasing 1100 18.0 0.16 061

the positive phase duration of a given 197 2.2 007 060

pressure impulse,
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Figure 7, Pregsure decay with distance from the line charge
for different shock propagation depths into the snow, pre-
dicted by the snowplow model, The air-blast curve ts draton
from data given in Table 1,

DISCUSSION AND CONCLUSIONS

The snowplow model has a limited ability to deseribe shock propagation and at-
tenuation in snow because of the simplifying underlying assutnptions. The model
is, however, capable of giving conservative estimates of shock attenuation in snow
and of illustrating some of the important features. Actual shock pressure attenu-
ation will be less than that predicted by the snowplow model using only one
compaction step to the final snow density. Better estimates of shock pressure
attenuation in snow may be possible using the snowplow model and a mote rea-
sonable compaction path for snow.

The snowplow model predicts that snow can cause shock pressures to decay as
a function of X;’ for plane waves, R™ for cylindrical waves and R™ for spherical
waves. Brown's (1980) pressure decay estimate of about X7 for plane waves is
different from thedecay predicted by the snowplow model, Agteement betweenthe
snowplow calculations and Brown’s estimates might improve if a realistic snow
compaction model were used in the snowplow model.

Mellor (1977) estimates that spherical geometry shocks, where £ >> R, attenuate
as K3 to P~ as compared to the snowplow model prediction of R, It may be that
the snowplow model predictions are grossly off because of the simple snow
compaction path used in the model or that the field measurements used by Mellor
to make his estimates are not the rerult of shocl: propagation in snow. The pressure
sensors used in many of the fleld tests were notable tosurvive near source pressures
and were, consequently, located well outside the zone of extreme shock induced
snow compaction. Qutside the zone of snow compaction, pressure decay is due to
viscous dissipation and geometric spreading, which produce much less pressure
attenuation than the pore collapse mechanisms described by the snowplow model.

13




This implies that Mellor's estimates of pressure decay in snow for spherical shocks
may be too low, but a final conclusion is not possible until better snow compaction
paths are used in the model calculations.

Estimating shock attenuation requires some thoughtful application of the results
of this study. Explosive-induced shocks in snow often result from an explosive
charge detonation on the snow or in the air above the snow. In this situation the
shock will be transmitted into the snow by an air-blast wave propagating over the
snow surface. If the initlal radius for the air-blast pressure wave striking the snow
is assumed to be the distance from the charge source to the position at which the
pressure is transmitted into the snow, then in most cases R, will be much greater
than the snow depth (i.e, € << R). Attenuation from the transmission position
through the snow will proceed as £°2 rather than as R~ for spherical waves or R™
for cylindrical waves.

Pressure decuy of shock waves in snow canbe delayed by increasing the positive
phase duration of the applied pressure impulse.
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